Nanotech Watch 13 䲩
京都ナノテク事業創成クラスター事業活動6年を振り返って

市原 達朗

6年間の活動の成里

平成14年度にスタートした京都ナノテク事業創成クラスターの事業活動も，その第 I 期の完了が近づいています。この間，ナノテク ノロジー技術の研究開発におしって，また事業化•商品化支援として，新規ベンチャー会社8社，新商品30件，試作品54件，事業移転5件独立行政法人新工ネルギー・産業技術総合開発機構（NEDO技術開発機構）等の他事業への移管54件，特許出䫢200件以上，論文 650件以上の成果を生み出しました。
こういった直接的効果に加え，さらに重要な成果として，社会資本 の充実が，オール京都体制下で一気呵成に推進，加速されています。桂イノベーションパークには，JSTイノベーションプラザ京都，京大桂ベンチャープラザ北館•南飽が整備され，62社の大企業•中

 が日々向上しています。また，この地域における大学人•企業人の交

関するトッフタダウン的な行政•民間による施策と，個人を起点とする形でボトムアッフ的に誕生した各種の啓発•教育カリキユラムが，渾然一体となり推進されています。このことが，京都地域がかねてか ら標榜してきた＂オール京都体制＂の整備を着実に推進していると考えます。
知的クラスタ一創成事業という，関連する全ての活動に共有の手立てを得ることができ，これまでは住組みとして存在した体制が，今 や実践の体制に昇華しつつあることは大変意味のある変化と評偳 できます。従前には個別し強力であった企業や大学が，点としてで はなく線，さらには，面としての強さに変晛しつつあり，このことが，地域クラスタ一創成の基本的命題への直接の答えだからです。

国際的ナノテク拠点としての京都に向けて
＂国際競争に打ち負かされない日本を構築すること（グローノバル化）＂ の観点からは，2007（平成19）年11月にピッツノ゙ーグで開催され たナノテク商業化に関するコンファレンスにおしいて，各国から招雱を れたナノイニシアティブズが，2015年のナノテク商業化元年に向 けての政策の披露に終始したのに対し，環境問題•枯渴問題といつ た＂21世紀の課題＂に対してのナノテクノロジーの持つ意義，及び 21世紀における科学と技術の新たな関係に言及した京都は，ユー一クなナノクラスターとして，諸国のナノイニシアティブズから注目

されました。さらに，当該クラスター事業創成期間中に，京都ナノテ ククラスターのメンバーから発表された論文は，その引用回数にお いて群を抜くものであり，特にその質の高さにおいて各国研究者か 5注目され，尊敬を集めています。

こういった形で，京都のナノテクに各国からのアテンションが集中し，情報発信拠点としての確固たる位置を確保することが，グロ一バル競争に参加し続けるために必要であると考えます。

ナノテク普及啓発活動

これら一連の活動を支える＂地域に対する貢献＂として，1，500 これら一連の活動を支える＂地域に対する責献として，1，500信による情報発信や，ナノテク啓発単行本「洛中洛外ナノテクばなし」『続•洛中洛外ナノテクばなし」を発行。また，地域の科学技術の向上を目指す，小中学生を対象とした＂リフレツシュ理科教室＂も，高 い評価を得ながら継䊦的に開催されています。

本当の挑戦

ナノテクノロジーを京都のコア・コンピタンス（Core Competence） として設定し，日々の新技術•新商品開発に產官学のリソースを集中するなか，同時に，21世紀初頭における人類史上未曾有の課題 への挑戦も狙う京都ナノテククラスターの位置づけは，世界的にも ユーークなポジションにあります。世界に誇れる京都のまちづくり
 のです。
20世紀じおけるイノベーションの破壊の対象が既存市場価値で あつたのに対し，21世紀の破壊の対象は既存の社会価値観といえ るでしょう。科学技術と文化が微妙し融合する京都であるからこそ この＂一見不可能とも思える挑戦＂にかける資格があるのです。 2008（平成20）年が，そのスタートとして有意義な1年になるよう，関係各位の熱い思いを結集したいと考えています。

ASTEM NEWS 第60号 2008（平成20）年1月発行発行人 所長 中村行宏発行人 所長中村行寀
財団法人京都高度技術研究所所在地 京都市下京区中堂寺南町134番地連絡先 Tel．075－315－3625（代）Fax．075－315－3614 URL http：／／www．astem．or．jp／ E－mail info＠astem．or．jp OASTEN 制作／アド・フロロ゙ィンジョン株式全萑

ASTEM NEWS

ADVANCED SOFTWARE TECHNOLOGY \＆MECHATRONICS RESEARCH INSTITUTE OF KYOTO

```
NEWS LINE UP
```


新春トップ対談

```
－ものづくり都市•京都の明日を拓く産学公連携により，新たな＂ひと＂と＂技術＂を創る
矢嶋 英敏（社団法人京都業会会長／株式会社鳥津製作所 代表取締役会長）
（財団法人京都高度捕研究所理事長）
特集
- バイオ材料技術の産業化を目指して
- 事業活動報告 情報事業の紹介 ナノテクウオッチ（13）
```


＂ナノテクの街 京都 創成＂を目指した

京都ナノテク事業創成クラスターの展開2002（平成14）年から実施された文部科学省知的ク ラスター創成事業京都ナノテク事業創成クラスターも，平成19年度で事業を終了します。
事業からは，650件を超える学術論文，30件強の新商品が生まれ，京都がナノテクの研究開発拠点として海外か らも注目されるようになりました。また，この事業がきっか けで，オール京都体制で産学公共同事業を進める京都産学公連槜幾構が発足し，桂イノベーションパークの整備が進み，研究開発型企業も集積しています
ナノテクの理解促連と地域での産学連携事業を発展さ せるため，KYO－NANO会（会員数 1.500 名）を設立し，普及る啓発活動に努めたほか，科学への探究心を満たす書籍と及啓発活動に努めたほか，科学への探九心を澗
このように，京都地域においてナノテクを基盤に学術的経済的に発展できる地域クラスター形成が，6年間の事業期間で見えてきました。さらなる地域発展のため第I期の事業を展開してまいゆます。

いた時期でした。そして，その頃，それまで米軍に押さえ られていたハイレー゙ルな工作機械を，京都府がさまぜま な努力を重ねて，もらい受け，それをもとに京都のもの づくり企業が大きなイノベーションを引き起こしていきま した。その中心的な役割を果たしたのが，京都工業会 だったのではないでしょうか。また，京都に集積する大学研究機関とコラボレーションする産学公連携を早くか ら推進し，インパクトのある多くの足跡も残しています。 また最近ではグローバリゼーションの進展にともない，中国やインドに進出した企業情報や投資情報などを的確 につかんで会員企業に知らせるなど，海外との橋渡し や情報伝達も大きな取組みの一つになっています。
■高木 京都市は，市内総生産の約 18% を製造業が占める＂ものづくりのまち＂で，近年はその割合も再び上昇傾向にあります。矢嶋会長が代表取締役会長を務められる島津製作所もまた，京都を代表するものづく りのリーデイング・カンパニーとして，大きな足跡を残して こられました。
－矢嶋 私が島津製作所の社長に就任したとき，世界的に有名な京都の半導体メーカーを訪ねたのですが， とても気さくに面談していただき，「以前，私たちが技術開発において困ったとき，島津製作所さんにアドバイス いただき，それが当社製品を生み出すきっかけとなった」 とおつしゃいました。島津源蔵が教育用理化学器械の製造を始めて以来，島津製作所の諸先輩たちが京都 という土地の中でさまざまな取組みをしてきた積重ねが，現在の発展につながっているんだと実感しました。
■高木 京都のものづくりの力は，多くの分野で国内外の技術革新の原動力となっているんですね。 2002（平成14）年，田中耕一さんがノーベル化学賞を受賞されましたが，島津製作所にとっても，京都のも のづくり企業にとっても，画期的なできごとだったと思 います。田中耕一さんの受賞に励まされて，「自分た ちも頑張ろう」と思われたエンジニアも多かったので はないでしょうか。
■矢嶋 島津製作所は国内では認知度が高いので すが，＂SHIMAZU＂ではなくて，＂SHIMADZU＂と英字表記するため，海外ではうまく発音できないこともあ って，「何をされている会社ですか？」と聞かれることが たびたびありました。田中耕一君が産業界で初めてノ ーベル賞を受賞したことで，海外での認知度も飛躍的

に高まりましたね。多くの企業や研究者，技術者のみな さんからお祝いの言葉をいただきましたが，彼の受賞を称える声ばかりでした。そういうことからも，島津製作所 がこれまで培ってきたものづくり力•技術力が，内外から高い評価と信頼を得てきたことがわかりました。

産学公の知的資産を融合し
 未来を見据えた技術開発を

■高木 ASTEMでは，知的クラスター創成事業に代表される国のさまざまなプロジェクトに参画し，大学の＂知＂ を産業界の＂技＂と結びつけ，新しい技術革新を創出 する産学公連携事業を積極的に進めています。また，京都バイオ産業創出支援プロジェクトでは，京都が得意とする計測•分析技術を，大阪や神戸で取り組まれ ている医療産業を支える中核技術として広げていく取組みを続けています。京都工業会も早くから産学公連携に取り組んでおられますが，特にどのような点を重視 されていますか。
■矢嶋 京都工業会では，産学公連携という言葉が一般化する以前の，昭和30年代から大学との連携に取り組んできました。ですから，今，あらためてイハー゙ーシ ヨンを起こすために産学公連携を行う，という意識はあ りません。京都のまちには，大学を中心とする＂学＂があり，中小企業や大企業からなる＂産＂があって，なおかつづ ランドとして京都の名前が世界中に知れ渡っています。世の中の風潮として産学連携をしているから始めるの ではなくて，京都ならではの産と学の知的資産が自然 に結びつくことによって，京都の優れた製品や技術，サ ービスは生まれてきたのではないでしょうか。
■高木おっしゃるとおりですね。「流行だからとりあえ ず参加しよう」というケースでは，なかなか事業化まで結びついていないのが実状です。事前の摺り合わせ のない＂この指とまれ方式＂では，成果は上がりにくい と思います。プロジェクトについても，＂特許をどれだけ申請したか＂＂実用化はどれくらい達成できたか＂とい った短期的な数字ばかりが評価されて，10年後，20年後にイノベーションに結びつくような，長期的な視点に立った研究開発にはなかなかスポットが当たりません。 また，バイオテクノロジーやナノテクノロジーといった，全

国共通の重要テーマであっても，地域の特性や強队を最大限に生かした，特長ある研究開発を進めていくこ とが大切だと思いますね。
－矢嶋 きっちりとした成果を出すためには，やはり䋛続的な視点が必要です。例えば，先ほどの田中耕一君 の研究も，20年以上コツコツと続けて，ようやく世界中 から注目されるようになりました。彼の開発した製品か たくさん売れているかというと，決してそうではありませ んか，その研究成果かさまませまな産業技術に活用され社会貢献こつながったことかか評侕をれたのでしょう。以前私か航空機器事業を担当していたとき，航空機の飛行情報をコックピットに表示するディスプレイ（照準器）の開発を手かけるるととになりました。それまでは2枚のガテ スを張り合わせたシングルなもので，限られた筺囲でし か情報表示できなかったのですが，「10年かかってもい いからつくりなさい」と言われ，さまざまな問題をクリアし なから，ホログラム技述を使つて広範な情報を表示する断型デイスプレイを開発しました。この技術は国産の航坴機に搭載されれるなど，実用化をれれ高し評価を受けて います。すぐに特許に結びつくような研究ではなく， 10年後を見据えて地道な研究を続けてきたからこそ，実を結んだのだと思います。

京都に刻まれた＂知＂をつむき ＂技＂を生み出す人材を育成

－高木 ASTEMでは，独創的な発想と技術を持った ＂起業家人才才＂の発掘や，高度を技秝的視点を持った＂技術経営（MOT）人材＂の有成など，さまぜまな人材有成事業にも取組んでいます。京都か持っている＂知＂と＂技＂ の虽合が革新的なイバーションをもたらすという目榽 についても，これを実現できるかどうかは＂人＂にかかつ ています。矢嶋会長は，人材有成についてどのように考えておられますか。
－嶋 会社のトップが，技術開発はももちろん，営業や坚理の専門的な部分まで理解することはなかなかか難し いでしよう。最も大切なことは，企業経営の要となる人材をどれだは青成できるかがと考えています。経学者は「と のような人材が，どのような場所に求められているのが を見抜く必要があります。わが国の教育しべルは決し

て低くはありませんが，ハーバード大学やスタンフォード大学などのようなトップレベルの英才教育ができている かというと，残念ながらそうはいえないように思います。 ですから，例えば，世界中の超一流の大学院やビジネス スクールと連携して，ハイレベルな経営センスや知識，能力を持った人材を育てられないでしょうか。島津製作所 では，各事業部門の優秀な部長•課長クラスを対象にし た＂島津経営塾＂を開設し，内外から講師を招いて，次代を担う＂MOT人材＂を育成しています。人材育成と
いう点でも，さまざ まな産学公連携 の可能性が考え られると思います。 ■高木京都に は大学や研究機関がたくさんあり ますが，それらが バラバラに機能 するのではなく，大学コンソーシア ム京都のような機関が中心となって， つのまとまりが生まれれば，全国 からも優れた人材 がもっと集まり，大 きなイバーション につながっていく でしょうね。また大学の＂シーズ＂と産業界の＂ニーズ＂を十分に理解し お互いを結びつけるコーディネータの育成も大切だと思 います。さらに，ASTEMがこれまでの取組みの中で萻積してきた＂○○大学の○○先生がどのような研究を ている＂という知的資産の情報を，京都工業会と共有すれば，「その技術によってこんなブレイクスルーか生まれる」といった新しい展開も見えてきます。ご指摘 いただいたとおり，人材育成にはもっと力を注いでまり まます。

設立20周年の節目を迎えて ものづくり都市の新たな飛躍を目指す

—髙木 近年，特に地球温暖化などの環境問題がク ローズアップされ，企業経営やものづくりにおいても環竟的な視点が求められるようになっています。京都には，環境先進都市として，ものづくりで培ってきた強みを生 かし，世界をリードする革新的な技術を創造していくこと が求められています。ASTEMは今年，設立20周年とい う大きな節目を迎 えます。私たちに期待されること望まれることなと があれば，ぜひお伺いしたいと思い ます。
■矢嶋 私は京都商工会議所の副会頭を務めて いるのですが，そ の会員企業1万 1000 社のうち， 90 $\%$ 以上が中小企業で占められてい ます。また，会員以外の企業は約7万社あるといわれ ています。そうし たなかには，伝統的な企業も多く，あまり知られていない＂匠の技＂もたく さんあるのではないでしょうか。こうした宝の山を掘り起 し，知的所有権としてきちんと評価し活用することが できれば，誰も想像したことがないようなイノベーションへ つながっていくのではないかと思います。知的クラス ーやバイオ関連事業など，最先端の技術創出や研究閏を生み出していくのはもちろんですが，その一方で きらりと光る＂厈の技＂にスポットを当て，それを技術革所へと結びつけていく取組みを進めていただきたいて すね。

高木 そうですね。その職人がいなくなれば，その技法や製品そのものが途絶えてしまうという伝統産業もあ

ります。これまでベテランの＂経験＂や＂勘＂に頼ってい た部分をデータ化して次代に継承していくなど，いろい ろな創意工夫を考えていくことが必要です。京都商工会議所の立石義雄会頭が「中小企業が元気になる＂知恵産業のまち・京都＂の推進」を提唱しておられますが， ASTEMと京都工業会，そして京都商工会議所などか協力して，京都ならではの知恵を活用していきたいと思 います。

矢嶋 加えて，企業と企業，つまり＂産•産連携＂士組みづくりも大切です。例えば，産学公連携でベン チャーを起こしたものづくり企業が，せっかくインキュべ ーション施設に入居しても，大学の知的資産だけに頼 ていると事業化のステップにうまく踏み出すことがなか なかできません。ASTEMが得意とされる技術系の人材育成，起業家育成の分野をさらに磨いていただき，産学連携だけではなく，さまざまな企業のものづくりの力を活用して，ぜひ，ベンチャー企業などがオリジナル技術の事業化に結びつけていけるよう，サポートしていただき たいと思います

髙木 矢嶋会長がおっしゃるように，京都には素晴ら しい技術を持った企業がたくさんあります。ASTEMでは， これからものづくりを始めようという起業家のサポートは もちろん，産学公連携に加えて，産•産連携による新産業新事業の創出など，さまざまな側面から京都の経済•产業界に貢献したいと思います。設立20周年を機に新た な飛矅を目指したいと考えていますので，ぜひこれから も京都工業会のご支援をお願いします。本日は，どうも ありがとうございました

［株式会社島津製作所貴賓室にて

バイオ材料技術の産業化を目指して

至 調 講 演

ASTEM産学連携事業部連倠支援づルーフ

地球温暖化防止に向けた京都の取組み

今日，二酸化炭素に代表される温室効果ガスの排出削減対策として，＂燃焼することなく自然に返すことのでき るバイオ材料技術＂の日常利用化に大きな期待が集まつ ています。しかし，日常利用に至るまでには，技術の信頼性や適正なコストパフォーマンスの確立等，技術的•社会的経済的な面で解決していかなければならない課題が多く あります。
京都市では，バイオ産業を21世紀の京都産業を支え る大きな柱と位置付け，2002（平成14）年に＂京都バイ オシティ構想＂を策定し，産学公連携による事業化支援に取り組んでいます。また京都は，地球温暖化防止に向け た『京都議定書」発祥の地であり，それ以前から，生分解性プラスチックやバイオ燃料の技術開発において，大学，企業，公設研究機関や行政が，日本の先陣を切ってきた場所でもあります。
こうした課題に対する技術的な解決方法は，バイオテク ノロジー・ナノテクノロジーの融合と，これらの基盤を支 える生物•化学•工学技術等を総合した科学技術の展開 が鍵を握っており，バイオ，ナノテクの両分野において強 い研究集積を持つ京都では，その強みを活かし，産学公連携のもと，研究開発から事業化に向けた先進的な取組 みを展開しています。
このような取組みにおいてASTEMは，産学公連携の もと，＂京都バイオシテイ構想＂に基づき設置された＂京都 バイオ産業技術フオーラム（京都市委託事業）＂，並びに＂京

都バイオ産業創出支援コロジェクト（経済産業省認定事業） を運営し，京都の特性を活かした有望なテーマとして，バ イオ材料技術における環境負荷低減のための代替材料 の企業への展開，及びそれらに関するセミナーや展示会 の開催といった活動を通じて，京都におけるバイオビジネ スを支援しています。

バイオ材料技術の結集

ーシンポジウムの開惟－
支援活動の一環として，京都バイオ産業技術フォーラム，及び京都バイオ産業創出支援コ゚ロジェクトでは，2007（平成19）年9月28日（金）に京都リサーチパークにおいて，京都大学生存圏研究所，京都工芸繊維大学繊維科学セン ター，京都市，京都ナノテク事業創成クラスターとの共同主催で，「バイオ材料技術の産業化を目指して《ここまで来たバイオ材料技術》」と題し，シンポジウムを開催しま した。
この技術課題に対する関心は非常に高く，府内外から，約200名の参加がありました。シンポジウムでは，＂バイ オ材料及びその技術の産業化＂について，最先端の開発動向及びその課題が紹介され，現在進められている石油代替プラスチックや植物由来ナノ材料の研究開発において，京都が先進地であることを改めて認識することができた のではないかと考えます。
今回『ASTEM NEWS」では，基調講演と各論講演を 2つピックアップして，京都において進められているバイ オ材料技術の研究について，その要旨を紹介します。

バイオ村料とバイオマスの将来

跲木 基え
二酸化崖素を地球全体で50\％削減するということは，日本だけ をとりあげてみると，83～84\％くらい削減しなげければなかませせん これは，今まで想定していた社会とはまつたく違つた社会をつくら
叕として描かれています。

生可能な生物由来の有機性資源で化石資源を除いたもの＂とされ ています。食品廃莱物や畜産廃葉物，下水污泥は糜葉物ですが，大 きなバイオマス資源です。末利用のバイオマスとしては，林地牫林
長するサトウキビ，ナツメカシ，麻が濐目されています。
バイオマス利用の方向としては，エネルギー利用，バイオオオ料と
しての利用になりますが，村料としてはフラスチックをバイオ村料 で代替できるかが課題となっています。パラダイム輷換からいえば石油化学材料の代替よいうより，新しい材料をつくるくらいの発想 が適切ではないでしょうか。
世界の一次工ネルギー消費の緵量 $1.13 \times 10^{11 \mathrm{kcal}}$（2005年） と地球上の光合成バイオマス生産 $6 \times 10^{17} \mathrm{kcal} /$ 年とを比べますと光合成の方がら倍多いのですが，日本の場合には，国土全体が有郊 に利用されたとしても，光合成で固定できるエネルギ一量は，現信 のエネルギー消費量の6～7分の1です。バイオマス生座量に見合 う臺らしとは，昭和30年代前井，署くなれは，扇風機や団康ですませていた暮らしです。

 バイオマスというのは原料が多様であり，どのような形態で資源化に結びつけることができるか知責を絞らなはればなぁません。こ のとき，資源化フロロスで大量の化石エネルギーを使用したので は本本転㨽で，バイオマスに適したコロセスを考えなはればならな してしょう。

菁

バイオベースマテリアルの未来
京都工罴織維大学大学院工芸科学研究科教授縉維科学センタター長

ンター長
木村 良晴

ハオベースボリマー，あるいはハハイオベースマテリアルといる言葉は最近になって使われるようにならましたが，これまでは生分解性材科として開発くれてきたもので9。2000（平成12）年挸 からは，カーボンニユートラル，あるいはは灾酸カスの䝯荷を低減す る素材として，比軣的長䐓に使用するフラスチック材料に用途展開 されるようになりました。定義は，＂植物等の再生可能な資源を原料に，化学のフロロセスだけでなく，バイオテクノロジーを使って変換しながら造られていく素がです。
加水分解にようて得られるグルコースやキシロースを，微生物発非デンプン系の再生可能資源は分解しにくく，この点か涀在の最大の課題です。
石油ベースのフラスチック材料は20世紀中におおよそ開発し尽くされており，21世紀型の新しい村料は，性能とコストバランス を考えた形で，別のパラダイムとして考えなければばなません。木

 ます。毟酸にはL体とD体とがありますが，これらを混ぜると邧致性 が非常に高しポリ乳酸とならます。このように，ボリ孚酸は誹常に幅広い可能性を持った素村ですので，十分石油系材料に代わるこ とができると考えています。

溝 演
バイオナノファイバーで創るバイオ自動車
京都大学生存图研究所 教授
矢野浩之
化石資源べースでできたものと同等の性能を持つたものよりも，
 こそ，植物材料イノベーションといえるでしよう。21世紀の循擐型会のベースになると考えている材料がバイオナノフアイバーです これは，全ての植物細抱の基本的構成エレメントで，驚くことに鋼鉄の5倍の強度を持ち，熱騂張性が極めて小さく，いうまでもなく低瓄境負荷で，私たちが良べても安全な材料です。

イオ自動車を例に話をすると，植物系材料け鉄の5分の1の重暈になります。軽いということははバイオにとつて非常に大事な性質
 これがCO2㓥減へとつながります。
バクテリアがつくつたセルロース（ナタデココ）のナノファイバーで透明の榬脂を補強すると，透明で鐿鉄並みの強度を持ち，ガラス並 みの低熱幦張，そしてフレキシブルという，從来の村料にない特性
 くく，，軽星化を四ることができると考えています。
生物資源村料は，人間がつくつたものではありません。私たちは， つくり手の思いを無視してものをつくつてはいけません。人問は，
 たつても，それだけの接術を人間は手に入れることはできないでし よう。私たち日本人は，植物や生物を敬いその力を借りるという考 えにはああまり抵抗がありません。我が家のダイニングテーブルは樹齢300年の粟の樹です。この棈を毎晩磨きながら，つくり手はどう いうことを考えているのかを感じて研究していきたいと思っています

京都市のバイオマス利活用に向けた取組みについて

ASTEMでは，従来から＂バイオマス利用研究会＂
 ルギーに变換し有効利用する取組あを支援してきま したが，平成19年度からは新たに宗都市と連欏して＂京都バイオサイクルブロジェクト＂をスタートさせました。
京都市のバイオマス利活用に向けた取組みか等につい てて紹介いただきます。

市民•事業者とのパートナーシップの取組み

京都市では，1997（平成9）年12月に開催された地球温暖化防止京都会議（COP3）を契機に，＂京都市地球温暖化対策地域推進計画＂などの計画を策定し，二酸化炭素排出量 を2010年までに10\％削減するという目標を揭げ，地球温暖化防止への取組みを進めるとともに，㡡芥䫄等のバイオマ スの利活用を図ゆ，環境負荷の少ない循環型の廃重物管理 システムの構筑等に重点をおいた＂京都市循環型社会推進基本計画＂などの計画を策定しました。
また，その具体化に向けて，パートナーシップの組織であ る＂京都市でみ減量推進会議＂などを市民•事業者との連携 の中で立ち上げ，地球温暖化防止に貢献する具体的な資源循環型システムを構築する取組みとして，全国に先駆け，廃食用油や生ごみなどのバイオマスをエネルギーとして有效利用する［（1）バイオディーゼル然料化事業］や［（2）バイオガス化実証研究事業すなどの具体的な取組みを実施しています。

京都バイオサイクルプロジェクトの開始

今後は，「バイオマスの利用促進は，地産地消の取組みであるとともに，循環型社会構築の推進に向けて極めて重要な施策であるとし，生でみのバイオガス化 や木材の液体燃料化など本市のバイオ マスの総合利用による地域循環システム の実用化に積槚的に取か組むとともに，国。大学と速携して，本市の先進的な取組を全国に普及拡大していく」ことを目標と して，平成19年度から［（1）コミニニティ一回収制度などの活用による生でみの モデル回収実験によるシステムの検討］ や［（2）バイオマス利活用の技術開発］と して，環境省の＂地球温暖化対策技術開発事業＂の研究支援を得て，京都市をつ イールドとした地域実証研究である＂京都バイオサイクルプロジェクト＂を，

ASTEMを受託機関として，京都市，京都大学，国立噮境研究所，企業等の産官学連携で3力年にわたり取り組むこととしました。 この技術開発事業は，京都市が市民との連携の中で全国 に先駆けて取り組んできた，廃食用油のディーゼル燃料への循睘利用であるバイオディーゼルル燃料化を核として，この燃料化事業から発生する廃グリセリンや生ごみの高効率なバイ オガス化，木質系バイオマスからの液体燃料化などに関する地域技術実証研究です。このように京都市では，バイオマス の利活用に向け，ソフト，ハード両面にわたり積極的に取ら組 むとともに，脱温暖化社会•循環型社会の実現に向けた実証 モデルを構築し，全国に発信し続けることにより，京都議定書誕生の地としての責務を果たしていきたいと考えています。

ASTEMへの期待

ASTEMには，従来からバイオマスからの物質・エネルギ一回収システムの構築を目的とした＂バイオマス利用研究会＂ （会長池上詢 京都大学名誉教授）があり，バイオ燃料に関す る調查研究として，＂バイオディーゼル燃料化事業に係る調査研究＂（京都市），＂流通過程における品質安定性等に関す る調査＂（石油産業活性化センター）などの研究受託実績も あります。今後，＂京都バイオサイクルフロロジェクト＂の研究受 もを契機として，当研究所が関西圏におけるバイオマス利活用研究の推進，特に，バイオプロダクトとバイオエネルギーの融合を企図した研究機能の創設を検討されることを期待し ます。
最後に，京都市をフィールドとして，温室効果がス削減につ ながるバイオマス利活用の技術実証研究を実施できること について，関係各位に深く感謝申し上げます。

京都バイオサイクルプロジェクト ［地域抆術実証研究：ASTEM•京都市•京都大学など］

京都大学ナノメディシン融合教育ユニット・京都市地域結集型共同研究事業
合同シンポジウム「ナノメディシンの拠点形成•教育から研究まで」
ASTEM産学連推事業部地域結集事業推進グルーフ
ASTEMが中核機関を担っている京都市地域結集型共同研究事業＊では，2007（平成19）年11月2日に，京都大学ナノメディ ン融合教育ユニット＊2と合同でシンポジウムを開倠し，それぞ への取組みが果たしている役割，成果の発表を行しました。 ナノメディシン融合教育ユニットは，その教育幾能により，また京都市地域結集型共同研究事業は研究開発により，ともに京都 におけるナノメディシンの拠点形成に向けた取組みとして連槜を図っており，平成18年度に引き続き，合同でのシンポジウムの開催となりました。
京都市地域結集型共同研究事業からは，グループの研究リ— ダーである京都大学再生医科学研究所の岩田博夫教授が，「ナノ デバイスによる医寮用柍查システムデバイス」の研究開発のうちち
 また，タルーフての研究ノーターである京都大学工学研究科の中

馀括しました。総括しました
都市地域結集型共同研究事業は，5年間の事業の後半に入 ておわ，今後，研究成果や事業化を明碓し意識しつつ，研究開発一首の進靕を図っていくことししています。

平成19年度京都市地域プラットフォーム事業
テクノ新選組！！京都中小企業展～いちおしべンチャー・中小企業めじろおし～
ASTEM産学連携事業部新事業創出支援づルーフ

平成19年度京都市地域フララットフォーム事業の一環として京都市が支援する有望なベンチャー，中小企業が参加する展示発表会＂テクノ新逥組！！京都中小企業展＂を，2007（平成19）年 11月8日（木）9日（金）の2日間にわたゆ，京都市铬業館みやこめ っせで開催しました。
京都市地域フラットフォーム事業の新規事業である本イベントは，京都市，ASTEM，（財）京都市中小企業支援かンターが共佺して京都市ベンチャー企業目利き委員会の認定企業等，京都市の支
 シチング等の場として開催し，2日間で合計20001の来場者を数えました。
会揚は，ヒビジネスブース展示ゾーン］［大企業マッチングゾーン］ フレレゼンテーションゾーン1に分かれいすかれのゾーンも，講演 や出展企業の説明を熱心に聞く参加者や，商談を進める出展者 で䀼わいをみせていました。
［ビジネスブース展示ゾーン］には，京都市ベンチャー企業目利き委員会Aランク認定企業や，企業侕值創出バリユークリエ ション）支援制度においてオスカー認定を受けた企業など約70社が出展。京都ならではの伝統産業から最先端のハイテク産業 まで，さまでまな業種の企業が，新製品や新技術，アイデア等を ア゚ールし，出展者の新たなビジネスチカンスづくりや眅路拡大， またネットワークづくりの機会としていただきました。
［大企業マッチングツーン］には，新たな受注猚得や貶路拡大 を目指の市内の中小・ベンチャー企業が殺到し，商談ブースを設 けた発注側の大手企業等じ対して，活発などジネスマツチングか行われました。
［フレレゼンテーションゾーン］では，基調講演として前二重県知事の北川正恭氏に，＂21世紀社会におおけるベンチャー・中小企業 の役割＂をテーマに講演いただきましたた。また，その他の講演や
広報の基本的な考え方や活用方法，百华店の法通の仕細
事業活動の参考にしていただくことができました。
企業の事業展開を多彩に支援することを目的とした本新規事業は，展示•発表会に加え，ビジネスマッチングイベントの開雔や，事業拡大に参考となる講演，セミナーを開講するなど，非常に充㬰した内容になゆ，新事業支援の中核機関として，京都市域のべ メチャー中は金の事業活動に大きく貢献すことができた考えます。
会場 $/$ 京都市勧業館みやこめつせ参加者数 $/ 2,000$ 名

Google Maps APIを活用した

京都市施設情報検索システム『施設マップ』の開発運用 URL http：／／www5．city．kyoto．jp／map／

システム情算の兓要と経緯／

京都市の委託によゆASTEMか開発した京都市施設性報検索 システム「施設マップ」は，その名のとおり市民向けに京都市関係の施設（区役所•学校•図書館等）の場所と概要を，地図を中心 として紹介するシステムとしてスタートしました。
このシステムでは，行政区やあらかじめ設定されているカテコ一，またキーワードにより検索を行うことができ，該当する施設 の情報は地図上の吹き出し内に表示されます。また，表示される地図は，縮尺の操作やドラッグによる場所移動，さらには航空写

このように本システムは，利用者にとって操作か簡単であわ，また わかりやすさ見やすさを念頭に置いたシステムとなっています

新幟能について

これまで，地図を用いたシススム開発は，非常にコストが高い ものとされていました。しかしながら，グーグル社が無料で公開 しているGoogle Maps APほを活用することにより，従来では考 らられないほど安価にシステムを構穊することができるようにな ました。
このGoogle Maps APはを活用した機能の追加を行うことに より，これまでの地㘠付きの施設一筧表の公開だけであったものに， ＂情報発倷䋠助ツール゙としての側面を挂たせることができました。 そして2007（平成19）年11月の京都市情報館（URL：http： ／www．city．kyoto．lg．jp／リリニュ一アルに合わせて，機能が追加され た施設強索システ

今回新たに追加された機能では，市内の各施設の地図上検索 だけでなく，各施設の場所のリンクを自動生成して，そのURLを公開することができます。
この機能には，一般の方が自由に利用できるものと，京都市矂員が利用できるものとのこ種粯があり，各機能の詳細は次のと つです。
（1）一般の方が刑用できる蟣能
各於設の树要や浬縕が表示され
 を押すと，URしが首動生成されれます（図 のとおり）。表示されたURLにアク セスすれば指定したた施設の＂施設 マリブか表示されます。この機能を所を紹介することができます。

2京都市職員專用の幾能

 かドラッグにようて該当する地龱を表示し，表示された地図上の任意の号 を指定することで，目的 の場所のURLを生成す ることができます。（1）
指定した場所にマーカ一が打たれた地図を表

ユーザの評価／

京都市総合企画局情報化推進室情報政策課 企画担当
本市では，従来からホームページを活用した行政情報の発信

 て視覚的にわかりやすい形で場代できるようになりました。

今後もっきき績き協力いただきながら，市民の皆様によってよロ かりやすく使いやすいシステムはしていきたいと考えできる

Google Maps APIをはじめとして，地区情報が手軽 に安佃に入手できるのうになら，利用者の地図情報への ニーズにも迅速かつ安価に対応できるようになってきて います。京都市施設情報検索システム「施設マツフリ」もまた， そうした流れの中で生まれたシステムです。今後，さらに わかりやすく使いやすく発信できるよう，京都市様とともに，発信する情報の充実やシステムの改良に取り組んでいき たいと考えています。是非で活用ください。

大学間情報通信ネットワーク Univnet の構築•運営

ASTEM情報事業部

システム構築の概要と経緯

ASTEMは，2002（平成14）年から，京都ONE構想＊1の基本施策の一つ として，地域の大学，研究開発幾開を結ぶ大学問惟報通信ネットワーク（以下， Univnet〈ユニブネット〉）を構筑し， これは，京都の大学を相互に高速大容量の通信回線で接続することを目的として，京都市の支援のもとに，
 こ統合），ASTEMが連携して構築を進めてきたものです。
Univnetは，ASTEM，滋賀 AP（Access Point）．Univnetセン一（中京区），京都大学（NCA5），\rightleftharpoons フパスフラザ京都の5接続ポイント核となる情報通信ネットワークを倳成し，この核となるネットワークに
通信ネットワークを構筑しています。現在，京都•大阪•滋賀•奈良の22の大学，4つの研究開発機関を安続しておわ，また，京都地域1（nternet eXchange）の京都 NE（kyoto－ONE）とも接続しています。
接続サービスとしては，これまで100Mbpsまでの速度でしたが成19年度，学術情報苂トリフークSINET＊のサービスか 10Gbpsに増強されたのを機に，1Gbpsのサービスの提供を䙹しました。
また，インターネット接続については，SINET以外にも法人向 リフロロバイダーサービスのkyoto－Pnetとも接続し，2つの上位 SP（Internet Service Provider）により，障害等への迅速な対応を図っています。

システムの活用例

Univnetは，次のように活用され，共同研究やe－learning へ の取組みを推進しています。
（1）学術情報ネットワークSINET，インターネットへの接続 （2）大学間の遠隔講莪の実現 （3）大学－病院間の情報交換

Univnetネットワーク構成図

ユーザの評価
京都市立耘術大学美林学部教插藤原 隆男様の声

京都市立芸術大学では，2003（平成15）年からUnivnetを用させていただいております。また，ASTEMには学内LANの管 でもお世話しなっています。Univnet利用開始当時，学内には だイエローケーブルが浅っておわ，VLANとの取以合わせが奇沙だと笑われてしまいましたが，この問題も本年度中には解消す る見込みです。Univnetはいつも迅速で丁寧な対応をしてくだ さるので，利用者としてとても満足しております。今後ともよる くお願いいたします。

ご活用くださし

Univnetの新サービス（Univnet2．0）も始まわ，お客さ ほにはより安価に高速なネットワークをで利用していただ
定してで利用していただけるように努めてまいります。是非ともまだで利用いただいていない大学•研突機開等の お客さまには一度Univntサービアの利用をで鳪し ただければと思います。

